跟着github上的项目json-tutorial完成一个json解析器。本文对应该项目的第三单元,重点在于解析字符串类型。

👉原项目地址

一、JSON 字符串语法

JSON 的字符串语法和 C 语言很相似,都是以双引号把字符括起来,如 "Hello"。但字符串采用了双引号作分隔,那么怎样可以在字符串中插入一个双引号? 把 a"b 写成 "a"b" 肯定不行,都不知道那里是字符串的结束了。因此,我们需要引入转义字符(escape character),C 语言和 JSON 都使用 \(反斜线)作为转义字符,那么 " 在字符串中就表示为 \"a"b 的 JSON 字符串则写成 "a\"b"。如以下的字符串语法所示,JSON 共支持 9 种转义序列:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
string = quotation-mark *char quotation-mark
char = unescaped /
escape (
%x22 / ; " quotation mark U+0022
%x5C / ; \ reverse solidus U+005C
%x2F / ; / solidus U+002F
%x62 / ; b backspace U+0008
%x66 / ; f form feed U+000C
%x6E / ; n line feed U+000A
%x72 / ; r carriage return U+000D
%x74 / ; t tab U+0009
%x75 4HEXDIG ) ; uXXXX U+XXXX
escape = %x5C ; \
quotation-mark = %x22 ; "
unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

简单翻译一下,JSON 字符串是由前后两个双引号夹着零至多个字符。字符分为无转义字符或转义序列。转义序列有 9 种,都是以反斜线开始,如常见的 \n 代表换行符。比较特殊的是 \uXXXX,当中 XXXX 为 16 进位的 UTF-16 编码,本单元将不处理这种转义序列,留待下回分解。

无转义字符就是普通的字符,语法中列出了合法的码点范围(码点还是在下单元才介绍)。要注意的是,该范围不包括 0 至 31、双引号和反斜线,这些码点都必须要使用转义方式表示。

二、字符串表示

在 C 语言中,字符串一般表示为空结尾字符串(null-terminated string),即以空字符('\0')代表字符串的结束。然而,JSON 字符串是允许含有空字符的,例如这个 JSON "Hello\u0000World" 就是单个字符串,解析后为11个字符。如果纯粹使用空结尾字符串来表示 JSON 解析后的结果,就没法处理空字符。

因此,我们可以分配内存来储存解析后的字符,以及记录字符的数目(即字符串长度)。由于大部分 C 程序都假设字符串是空结尾字符串,我们还是在最后加上一个空字符,那么不需处理 \u0000 这种字符的应用可以简单地把它当作是空结尾字符串。

了解需求后,我们考虑实现。lept_value 事实上是一种变体类型(variant type),我们通过 type 来决定它现时是哪种类型,而这也决定了哪些成员是有效的。首先我们简单地在这个结构中加入两个成员:

1
2
3
4
5
6
typedef struct {
char* s;
size_t len;
double n;
lept_type type;
}lept_value;

然而我们知道,一个值不可能同时为数字和字符串,因此我们可使用 C 语言的 union 来节省内存:

1
2
3
4
5
6
7
typedef struct {
union {
struct { char* s; size_t len; }s; /* string */
double n; /* number */
}u;
lept_type type;
}lept_value;

这两种设计在 32 位平台时的内存布局如下,可看出右方使用 union 的能省下内存。

union_layout

我们要把之前的 v->n 改成 v->u.n。而要访问字符串的数据,则要使用 v->u.s.sv->u.s.len。这种写法比较麻烦吧,其实 C11 新增了匿名 struct/union 语法,就可以采用 v->nv->sv->len 来作访问。

三、内存管理

由于字符串的长度不是固定的,我们要动态分配内存。为简单起见,我们使用标准库 <stdlib.h> 中的 malloc()realloc()free() 来分配/释放内存。

当设置一个值为字符串时,我们需要把参数中的字符串复制一份:

1
2
3
4
5
6
7
8
9
void lept_set_string(lept_value* v, const char* s, size_t len) {
assert(v != NULL && (s != NULL || len == 0));
lept_free(v);
v->u.s.s = (char*)malloc(len + 1);
memcpy(v->u.s.s, s, len);
v->u.s.s[len] = '\0';
v->u.s.len = len;
v->type = LEPT_STRING;
}

断言中的条件是,非空指针(有具体的字符串)或是零长度的字符串都是合法的。

注意,在设置这个 v 之前,我们需要先调用 lept_free(v) 去清空 v 可能分配到的内存。例如原来已有一字符串,我们要先把它释放。然后就是简单地用 malloc() 分配及用 memcpy() 复制,并补上结尾空字符。malloc(len + 1) 中的 1 是因为结尾空字符。

那么,再看看 lept_free()

1
2
3
4
5
6
void lept_free(lept_value* v) {
assert(v != NULL);
if (v->type == LEPT_STRING)
free(v->u.s.s);
v->type = LEPT_NULL;
}

现时仅当值是字符串类型,我们才要处理,之后我们还要加上对数组及对象的释放。lept_free(v) 之后,会把它的类型变成 null。这个设计能避免重复释放

但也由于我们会检查 v 的类型,在调用所有访问函数之前,我们必须初始化该类型。所以我们加入 lept_init(v),因非常简单我们用宏实现:

1
#define lept_init(v) do { (v)->type = LEPT_NULL; } while(0)

用上 do { ... } while(0) 是为了把表达式转为语句,模仿无返回值的函数。

其实在前两个单元中,我们只提供读取值的 API,没有写入的 API,就是因为写入时我们还要考虑释放内存。我们在本单元中把它们补全:

1
2
3
4
5
6
7
8
9
10
11
#define lept_set_null(v) lept_free(v)

int lept_get_boolean(const lept_value* v);
void lept_set_boolean(lept_value* v, int b);

double lept_get_number(const lept_value* v);
void lept_set_number(lept_value* v, double n);

const char* lept_get_string(const lept_value* v);
size_t lept_get_string_length(const lept_value* v);
void lept_set_string(lept_value* v, const char* s, size_t len);

由于 lept_free() 实际上也会把 v 变成 null 值,我们只用一个宏来提供 lept_set_null() 这个 API。

应用方的代码在调用 lept_parse() 之后,最终也应该调用 lept_free() 去释放内存。我们把之前的单元测试也加入此调用。

如果不使用 lept_parse(),我们需要初始化值,那么就像以下的单元测试,先 lept_init(),最后 lept_free()

1
2
3
4
5
6
7
8
9
static void test_access_string() {
lept_value v;
lept_init(&v);
lept_set_string(&v, "", 0);
EXPECT_EQ_STRING("", lept_get_string(&v), lept_get_string_length(&v));
lept_set_string(&v, "Hello", 5);
EXPECT_EQ_STRING("Hello", lept_get_string(&v), lept_get_string_length(&v));
lept_free(&v);
}

四、缓冲区与堆栈

我们解析字符串(以及之后的数组、对象)时,需要把解析的结果先储存在一个临时的缓冲区,最后再用 lept_set_string() 把缓冲区的结果设进值之中。(?)在完成解析一个字符串之前,这个缓冲区的大小是不能预知的。因此,我们可以采用动态数组(dynamic array)这种数据结构,即数组空间不足时,能自动扩展。C++ 标准库的 std::vector 也是一种动态数组。

如果每次解析字符串时,都重新建一个动态数组,那么是比较耗时的。我们可以重用这个动态数组,每次解析 JSON 时就只需要创建一个。而且我们将会发现,无论是解析字符串、数组或对象,我们也只需要以先进后出的方式访问这个动态数组。换句话说,我们需要一个动态的堆栈(stack)数据结构。

我们把一个动态堆栈的数据放进 lept_context 里:

1
2
3
4
5
typedef struct {
const char* json;
char* stack;
size_t size, top;
}lept_context;

当中 size 是当前的堆栈容量,top 是栈顶的位置(由于我们会扩展 stack,所以不要把 top 用指针形式存储)。

然后,我们在创建 lept_context 的时候初始化 stack 并最终释放内存:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
int lept_parse(lept_value* v, const char* json) {
lept_context c;
int ret;
assert(v != NULL);
c.json = json;
c.stack = NULL; /* <- */
c.size = c.top = 0; /* <- */
lept_init(v);
lept_parse_whitespace(&c);
if ((ret = lept_parse_value(&c, v)) == LEPT_PARSE_OK) {
/* ... */
}
assert(c.top == 0); /* <- */
free(c.stack); /* <- */
return ret;
}

在释放时,加入了断言确保所有数据都被弹出。

然后,我们实现堆栈的压入及弹出操作。和普通的堆栈不一样,我们这个堆栈是以字节储存的。每次可要求压入任意大小的数据,它会返回数据起始的指针(会 C++ 的同学可再参考[1]):

lept_context_push: 保证栈的大小并返回栈顶位置

lept_context_pop: 调整top并返回pop值位置

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#ifndef LEPT_PARSE_STACK_INIT_SIZE
#define LEPT_PARSE_STACK_INIT_SIZE 256
#endif

static void* lept_context_push(lept_context* c, size_t size) {
void* ret;
assert(size > 0);
if (c->top + size >= c->size) {
if (c->size == 0)
c->size = LEPT_PARSE_STACK_INIT_SIZE;
while (c->top + size >= c->size)
c->size += c->size >> 1; /* c->size * 1.5 */
c->stack = (char*)realloc(c->stack, c->size);
}
ret = c->stack + c->top;
c->top += size; // 更新top
return ret;
}

static void* lept_context_pop(lept_context* c, size_t size) {
assert(c->top >= size);
return c->stack + (c->top -= size);
}

压入时若空间不足,便回以 1.5 倍大小扩展。为什么是 1.5 倍而不是两倍?可参考 STL 的 vector 有哪些封装上的技巧?

注意到这里使用了 realloc() 来重新分配内存,c->stack 在初始化时为 NULLrealloc(NULL, size) 的行为是等价于 malloc(size) 的,所以我们不需要为第一次分配内存作特别处理。

另外,我们把初始大小以宏 LEPT_PARSE_STACK_INIT_SIZE 的形式定义,使用 #ifndef X #define X ... #endif 方式的好处是,使用者可在编译选项中自行设置宏,没设置的话就用缺省值。

五、解析字符串

有了以上的工具,解析字符串的任务就变得很简单。我们只需要先备份栈顶,然后把解析到的字符压栈,最后计算出长度并一次性把所有字符弹出,再设置至值里便可以。以下是部分实现,没有处理转义和一些不合法字符的校验。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#define PUTC(c, ch) do { *(char*)lept_context_push(c, sizeof(char)) = (ch); } while(0)

static int lept_parse_string(lept_context* c, lept_value* v) {
size_t head = c->top, len;
const char* p;
EXPECT(c, '\"');
p = c->json;
for (;;) {
char ch = *p++;
switch (ch) {
case '\"':
len = c->top - head;
lept_set_string(v, (const char*)lept_context_pop(c, len), len);
c->json = p;
return LEPT_PARSE_OK;
case '\0':
c->top = head;
return LEPT_PARSE_MISS_QUOTATION_MARK;
default:
PUTC(c, ch);
}
}
}

六、总结与练习答案

之前的单元都是固定长度的数据类型(fixed length data type),而字符串类型是可变长度的数据类型(variable length data type),因此本单元花了较多篇幅讲述内存管理和数据结构的设计和实现。字符串的解析相对数字简单,以下的习题难度不高,同学们应该可轻松完成。

  1. 编写 lept_get_boolean() 等访问函数的单元测试,然后实现。

访问函数的实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
int lept_get_boolean(const lept_value* v) {
assert(v != NULL && (v->type == LEPT_TRUE || v->type == LEPT_FALSE));
return v->type == LEPT_TRUE;
}

void lept_set_boolean(lept_value* v, int b) {
lept_free(v);
v->type = b ? LEPT_TRUE : LEPT_FALSE;
}

double lept_get_number(const lept_value* v) {
assert(v != NULL && v->type == LEPT_NUMBER);
return v->u.n;
}

void lept_set_number(lept_value* v, double n) {
lept_free(v);
v->u.n = n;
v->type = LEPT_NUMBER;
}

在编写单元测试时,我们故意先把值设为字符串,那么做可以测试设置其他类型时,有没有调用 lept_free() 去释放内存。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
static void test_access_boolean() {
lept_value v;
lept_init(&v);
lept_set_string(&v, "a", 1);
lept_set_boolean(&v, 1);
EXPECT_TRUE(lept_get_boolean(&v));
lept_set_boolean(&v, 0);
EXPECT_FALSE(lept_get_boolean(&v));
lept_free(&v);
}

static void test_access_number() {
lept_value v;
lept_init(&v);
lept_set_string(&v, "a", 1);
lept_set_number(&v, 1234.5);
EXPECT_EQ_DOUBLE(1234.5, lept_get_number(&v));
lept_free(&v);
}

如果我们没有调用 lept_free(),会发生内存泄露,如何发现这些内存泄漏呢?

内存泄漏是指你向系统申请分配内存进行使用(new),可是使用完了以后却不归还(delete),结果你申请到的那块内存你自己也不能再访问(也许你把它的地址给弄丢了,在这里是因为lept_type不是LEPT_STRING了,存储的字符串地址无意义不能访问),而系统也不能再次将它分配给需要的程序。

1A. Windows 下的内存泄漏检测方法

在 Windows 下,可使用 Visual C++ 的 C Runtime Library(CRT) 检测内存泄漏

首先,我们在两个 .c 文件首行插入这一段代码:

1
2
3
4
#ifdef _WINDOWS
#define _CRTDBG_MAP_ALLOC
#include <crtdbg.h>
#endif

并在 main() 开始位置插入:

1
2
3
4
int main() {
#ifdef _WINDOWS
_CrtSetDbgFlag(_CRTDBG_ALLOC_MEM_DF | _CRTDBG_LEAK_CHECK_DF);
#endif

在 Debug 配置下按 F5 生成、开始调试程序,没有任何异样。

然后,我们删去 lept_set_boolean() 中的 lept_free(v)

1
2
3
4
void lept_set_boolean(lept_value* v, int b) {
/* lept_free(v); */
v->type = b ? LEPT_TRUE : LEPT_FALSE;
}

再次按 F5 生成、开始调试程序,在输出会看到内存泄漏信息:

1
2
3
4
5
Detected memory leaks!
Dumping objects ->
C:\GitHub\json-tutorial\tutorial03_answer\leptjson.c(212) : {79} normal block at 0x013D9868, 2 bytes long.
Data: <a > 61 00
Object dump complete.

这正是我们在单元测试中,先设置字符串,然后设布尔值时没释放字符串所分配的内存。比较麻烦的是,它没有显示调用堆栈。从输出信息中 ... {79} ... 我们知道是第 79 次分配的内存做成问题,我们可以加上 _CrtSetBreakAlloc(79); 来调试,那么它便会在第 79 次时中断于分配调用的位置,那时候就能从调用堆栈去找出来龙去脉。

1B. Linux/OSX 下的内存泄漏检测方法

在 Linux、OS X 下,我们可以使用 valgrind 工具(用 apt-get install valgrindbrew install valgrind)。我们完全不用修改代码,只要在命令行执行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
$ valgrind --leak-check=full  ./leptjson_test
==22078== Memcheck, a memory error detector
==22078== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==22078== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==22078== Command: ./leptjson_test
==22078==
--22078-- run: /usr/bin/dsymutil "./leptjson_test"
160/160 (100.00%) passed
==22078==
==22078== HEAP SUMMARY:
==22078== in use at exit: 27,728 bytes in 209 blocks
==22078== total heap usage: 301 allocs, 92 frees, 34,966 bytes allocated
==22078==
==22078== 2 bytes in 1 blocks are definitely lost in loss record 1 of 79
==22078== at 0x100012EBB: malloc (in /usr/local/Cellar/valgrind/3.11.0/lib/valgrind/vgpreload_memcheck-amd64-darwin.so)
==22078== by 0x100008F36: lept_set_string (leptjson.c:208)
==22078== by 0x100008415: test_access_boolean (test.c:187)
==22078== by 0x100001849: test_parse (test.c:229)
==22078== by 0x1000017A3: main (test.c:235)
==22078==
...

它发现了在 test_access_boolean() 中,由 lept_set_string() 分配的 2 个字节("a")泄漏了。

Valgrind 还有很多功能,例如可以发现未初始化变量。我们若在应用程序或测试程序中,忘了调用 lept_init(&v),那么 v.type 的值没被初始化,其值是不确定的(indeterministic),一些函数如果读取那个值就会出现问题:

1
2
3
4
5
6
static void test_access_boolean() {
lept_value v;
/* lept_init(&v); */
lept_set_string(&v, "a", 1);
...
}

这种错误有时候测试时能正确运行(刚好 v.type 被设为 0),使我们误以为程序正确,而在发布后一些机器上却可能崩溃。这种误以为正确的假像是很危险的,我们可利用 valgrind 能自动测出来:

1
2
3
4
5
6
7
8
9
$ valgrind --leak-check=full  ./leptjson_test
...
==22174== Conditional jump or move depends on uninitialised value(s)
==22174== at 0x100008B5D: lept_free (leptjson.c:164)
==22174== by 0x100008F26: lept_set_string (leptjson.c:207)
==22174== by 0x1000083FE: test_access_boolean (test.c:187)
==22174== by 0x100001839: test_parse (test.c:229)
==22174== by 0x100001793: main (test.c:235)
==22174==

它发现 lept_free() 中依靠了一个未初始化的值来跳转,就是 v.type,而错误是沿自 test_access_boolean()

编写单元测试时,应考虑哪些执行次序会有机会出错,例如内存相关的错误。然后我们可以利用 TDD 的步骤,先令测试失败(以内存工具检测),修正代码,再确认测试是否成功。

  1. 实现除了 \u 以外的转义序列解析,令 test_parse_string() 中所有测试通过。

转义序列的解析很直观,对其他不合法的字符返回 LEPT_PARSE_INVALID_STRING_ESCAPE

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
static int lept_parse_string(lept_context* c, lept_value* v) {
/* ... */
for (;;) {
char ch = *p++;
switch (ch) {
/* ... */
case '\\': // 前面还有一个\是为了符合C语言的语法
switch (*p++) {
case '\"': PUTC(c, '\"'); break;
case '\\': PUTC(c, '\\'); break;
case '/': PUTC(c, '/' ); break;
case 'b': PUTC(c, '\b'); break;
case 'f': PUTC(c, '\f'); break;
case 'n': PUTC(c, '\n'); break;
case 'r': PUTC(c, '\r'); break;
case 't': PUTC(c, '\t'); break;
default:
c->top = head;
return LEPT_PARSE_INVALID_STRING_ESCAPE;
}
break;
/* ... */
}
}
}
  1. 解决 test_parse_invalid_string_escape()test_parse_invalid_string_char() 中的失败测试。

上面已解决不合法转义,余下部分的唯一难度,是要从语法中知道哪些是不合法字符:

1
unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

当中空缺的 %x22 是双引号,%x5C 是反斜线,都已经处理。所以不合法的字符是 %x00 至 %x1F。我们简单地在 default 里处理:

1
2
3
4
5
6
7
8
/* ... */
default:
if ((unsigned char)ch < 0x20) {
c->top = head;
return LEPT_PARSE_INVALID_STRING_CHAR;
}
PUTC(c, ch);
/* ... */

注意到 char 带不带符号,是实现定义的。如果编译器定义 char 为带符号的话,(unsigned char)ch >= 0x80 的字符,都会变成负数,并产生 LEPT_PARSE_INVALID_STRING_CHAR 错误。(?)我们现时还没有测试 ASCII 以外的字符,所以有没有转型至不带符号都不影响,但下一单元开始处理 Unicode 的时候就要考虑了。

  1. 思考如何优化 test_parse_string() 的性能,那些优化方法有没有缺点。(?)
  • 如果整个字符串都没有转义符,我们不就是把字符复制了两次?第一次是从 jsonstack,第二次是从 stackv->u.s.s。我们可以在 json 扫描 '\0''\"''\\' 3 个字符( ch < 0x20 还是要检查),直至它们其中一个出现,才开始用现在的解析方法。这样做的话,前半没转义的部分可以只复制一次。缺点是,代码变得复杂一些,我们也不能使用 lept_set_string()

  • 对于扫描没转义部分,我们可考虑用 SIMD 加速,如 RapidJSON 代码剖析(二):使用 SSE4.2 优化字符串扫描 的做法。这类底层优化的缺点是不跨平台,需要设置编译选项等。

  • 在 gcc/clang 上使用 __builtin_expect() 指令来处理低概率事件,例如需要对每个字符做 LEPT_PARSE_INVALID_STRING_CHAR 检测,我们可以假设出现不合法字符是低概率事件,然后用这个指令告之编译器,那么编译器可能可生成较快的代码。然而,这类做法明显是不跨编译器,甚至是某个版本后的 gcc 才支持。

  • ……

七、参考

[1] RapidJSON 代码剖析(一):混合任意类型的堆栈

留言

⬆︎TOP